Fully complex-valued radial basis function networks: Orthogonal least squares regression and classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully complex-valued radial basis function networks: Orthogonal least squares regression and classification

We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Lik...

متن کامل

A fully complex-valued radial basis function classifier for real-valued classification problems

In this paper, we investigate the decision making ability of a fully complex-valued radial basis function (FC-RBF) network in solving real-valued classification problems. The FC-RBF classifier is a single hidden layer fully complex-valued neural network with a nonlinear input layer, a nonlinear hidden layer, and a linear output layer. The neurons in the input layer of the classifier employ the ...

متن کامل

Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks

The paper presents a two-level learning method for radial basis function (RBF) networks. A regularized orthogonal least squares (ROLS) algorithm is employed at the lower level to construct RBF networks while the two key learning parameters, the regularization parameter and the RBF width, are optimized using a genetic algorithm (GA) at the upper level. Nonlinear time series modeling and predicti...

متن کامل

On the efficiency of the orthogonal least squares training method for radial basis function networks

The efficiency of the orthogonal least squares (OLS) method for training approximation networks is examined using the criterion of energy compaction. We show that the selection of basis vectors produced by the procedure is not the most compact when the approximation is performed using a nonorthogonal basis. Hence, the algorithm does not produce the smallest possible networks for a given approxi...

متن کامل

Regularized orthogonal least squares algorithm for constructing radial basis function networks

International Journal of Control Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713393989 Regularized orthogonal least squares algorithm for constructing radial basis function networks S. Chen a; E. S. Chng b; K. Alkadhimi a a Department of Electrical and Electronic Engineering, University of Portsmouth, Port...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2008

ISSN: 0925-2312

DOI: 10.1016/j.neucom.2007.12.003